Строение скелетных мышц

Тема в разделе "Анатомия", создана пользователем admin, 10 апр 2012.

  1. admin

    admin Administrator Команда форума

    Строение скелетной мышцы. Мышечное сокращение. Актин и Миозин.

    Скелетные мышцы – удерживают тело в равновесии и осуществляют движения, это наши бицепсы, трицепсы и прочее, то есть то, что мы качаем, занимаясь бодибилдингом. Они способны очень быстро сокращаться, и очень быстро расслабляться, при интенсивной деятельности они довольно быстро утомляются.

    10010201.png

    Структурной и функциональной единицей скелетной мышцы является мышечное волокно, представляющее собой сильно вытянутую клетку. Длина мышечного волокна зависит от размеров мышцы и составляет от нескольких миллиметров до нескольких сантиметров. Толщина волокна различна 10-100 микрометров.

    Мышечные волокна бывают двух видов :

    1) Красные волокна - содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает обычного кислородного питания. Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

    2) Белые волокна - значительная сила сокращений, для этого требуется много энергии и уже одного кислорода тут недостаточно, большая активность ферментов расщепляющих глюкозу. Поэтому двигательные единицы , состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

    Мышечная клетка имеет своеобразное строение. Мышечное волокно многоядерно, связано это с особенностью формирования волокна при развитии плода. Образуются они на этапе эмбрионального развития организма из клеток предшественников – миобластов.

    Миобласты неоформленные одноядерные мышечные клетки.

    Миобласты интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл,

    Миофибриллы- цилиндрические сократительные нитки толщиной 1 - 2 миктометра, идущие вдоль от одного конца мышечной клетки до другого.

    и завершается формирование волокна миграцией ядер на окраины клеток. Ядра мышечного волокна к этому времени уже теряют способность к делению, и занимаются только функцией генерации информации для синтеза белка.
    Но не все миобласты идет по пути слияния, часть из них обособляется в виде так называемых клеток-спутников, которые располагаются на поверхности мышечного волокна, в оболочке которая окружает мышечную клетку. Эти клетки, их называют еще Клетки-Сателлиты, в отличии от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечное массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря этим клеткам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателлиты активизируются, делятся и преобразуются в миобласты. Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального развития мышц. ( как при рождении ).

    Механизм сокращения мышечного волокна.

    muscles.jpg

    Разберем подробней строение миофибрилл, этих ниток которые растягиваются параллельно друг другу в мышечных клетках, число которых в одном таком волокне может достигать пару тысяч. Миофибриллы обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно.
    Чередование светлых и темных полос в миофибрильной нити определяется упорядоченным расположением по длине миофибриллы толстых нитей белка миозина и тонких нитей белка актина:
    1234.jpg

    толстые нити содержатся только в темных участках (А-зона), светлые участки (I-зона) не содержат толстых нитей, в середине I-зоны находится Z-диск – к нему крепятся тонкие нити актина. Участок миофибриллы, состоящий из А-зоны и двух половинок I-зоны, называют - саркомером. Саркомер - это базовая сократительная еденица мышцы. Границы саркомеров в соседних миофибриллах совпадают, поэтому вся мышечная клетка приобретает регулярную исчерченность.

    Миозин - белок сократительных волокон мышц. Его содержание в мышцах около 40% от массы всех белков ( для примера, в других тканях всего 1-2% ). Молекула миозина представляет собой длинный нитевидный стержень, как будто сплетенные две веревки образующие на одном конце две грушевидные головки.

    Актинтак же белок сократительных волокон мышц, гораздо меньший по разному чем миозин, и занимающий всего 15-20% от общей массы всех белков. Крепится к Z-диску .Представляет собой сплетенные две нитки в стержень, с канавками, в которых залегает двойная цепочка другово белка - тропомиозина. Основной его функцией является блокировка сцепления миозина с актином, в расслабленном состоянии мышц.

    Сокращение длины саркомера происходит путем втягивания тонких нитей актина между толстыми нитями миозина. Скольжение нитей актина вдоль нитей миозина происходит благодаря наличию у нитей миозина боковых ответвлений. Головка миозинового мостика сцепляется с актином и изменяет угол наклона к оси нити, тем самым как бы продвигая нить миозина и актина относительно друг друга, затем отцепляется, сцепляется вновь и вновь совершает движение.

    444.jpg

    Перемещение миозиновых мостиков можно сравнить с гребками весел на галерах. Как перемещение галеры в воде происходит благодаря движению весел, так и скольжение нитей происходит благодаря гребковым движениям мостиков, существенное отличие состоит лишь в том, что движение мостиков не синхронное. При поступлении нервного импульса клеточная мембрана меняет полярность заряда, и из специальных цистерн (эндоплазматического ретикулума), расположенных вокруг каждой миофибриллы вдоль всей ее длины, в саркоплазму выбрасываются ионы кальция (Са++).
    Под воздействием Са++ нить тропомиозина входит глубже в канавку и освобождает места для сцепления миозина с актином, мостики начинают цикл гребков. Сразу после высвобождения Са++ из цистерн он начинает закачиваться обратно, концентрация Са++ в саркоплазме падает, тропомиозин выдвигается из канавки и блокирует места сцепления мостиков – волокно расслабляется. Новый импульс опять выбрасывает Са++ в саркоплазму и все повторяется. При достаточной частоте импульсации (не менее 20 Гц) отдельные сокращения почти полностью сливаются, то есть достигается состояние устойчивого сокращения, называемое тетаническим сокращением.

    Строение мышцы


    Мышечное сокращение